Olduvaiblog: Musings on the coming collapse

Home » Posts tagged 'our finite world'

Tag Archives: our finite world

A Gift From The Collapseniks  |  Peak Oil News and Message Boards

A Gift From The Collapseniks  |  Peak Oil News and Message Boards.

Of what possible use is it to imagine the end of civilization or even of the species? Is it simply a pessimistic indulgence or can it contribute to progressive and other positive results?

When I was a child, my family’s pastor used to elbow into almost every sermon an admiring reference to “St. John languishing in exile on the rock-bound, sea-girt island of Patmos.” He was referring to the author of  the grisly Book of Revelation , the dominant Western source of apocalyptic imagery.

We chuckle at cartoons of robed men on city sidewalks carrying placards that claim, “the end is nigh,” and at bumper stickers that declare, “in case of Rapture, this car will be driverless” (which sounds more dangerous than driving under the influence). Since St. John’s fiery prose, there have been many predictions of the end, including the modern cult studied by social psychologist Leon Festinger in When Prophecy Fails (1956).

Those who see danger tend to accuse others of “denial,” of “refusing to listen.” Perhaps a tincture of denial has given humans an evolutionary advantage. Speaking positively, psychologists refer to “optimism bias.” Most of us tend to imagine that things will turn out better than they do, a common mental pattern studied by such authors as Tali Sharot. While this trait arguably encourages enterprises, some of which succeed, it may also, on occasion, blind us to the possibility of avoidable loss, even terminal loss.

In A Year to Live (1997), Stephen Levine asks readers to pretend they have the awful privilege of knowing when they will die (in 52 weeks) and challenges them to review their histories honestly and to live abundantly in the remaining time. As my wife and I know, from working through Levine’s book with another couple, the result can be an enhancement of life.

During the Cold War, Joanna Macy gave us Despair and Personal Power in the Nuclear Age (1983). Before writing on ecology, on general systems theory, and on hope, Macy taught that a fuller life, including activism, could be approached through uninhibited expression of the deep feelings that led us to be concerned. More recent examples are the grief work of Carolyn Baker, author of Sacred Demise (2009) and Collapsing Consciously (2013) and of Francis Weller, author of Entering the Healing Ground (2012).

Still, it’s going against the grain to ask people to imagine extreme loss. Unlike some so-called primitive groups, our society is not set up for it, apart from isolated workshops. According to both Baker and Weller, working through grief requires the support of a community and the additional safety of a ritual container. For all its virtues, U.S. culture is based more on individuality, the frontier, and risky enterprise, than on mutual support and safe space.

Nonetheless, a growing number of observers of climate change and other trends foresee disaster. We can describe them as collapseniks, a term with a suffix derived from Russian in honor of Dmitri Orlo*, who grew up in St. Petersburg (then Leningrad) and emigrated to the U.S. An engineer, sailor, and writer, Orlov believes that his adopted country will descend into collapse, and that the U.S. is less well prepared than the country where he was raised. If we define collapsenik as an observer who is conscious of the possibility of economic, political, and social collapse and who believes collapse is worth taking seriously, then Orlov has a parade of company, of which I will give chronological highlights at the end of this piece.

There are big differences among collapsenik authors and even in a single author at different times. A spectrum exists, from those who feel we could avoid the worst of climate change by changing our ways substantially (“we’re sleepwalking toward disaster but could conceivably wake up”) to those who believe our species is doomed (“it’s already too late”). For example, scientist Guy McPherson has come to believe that, as a species, we are headed toward “near-term extinction” (niftily abbreviated as NTE).

While pessimists predict NTE, optimists envision the triumph of a progressive politics that would render climate change survivable, perhaps shifting us toward a steady-state economy, slowing the sixth extinction of species, and fostering a network of local and democratic institutions. An optimistic scenario would resonate with what Macy, expressing hope, now calls “The Great Turning.”

In contrast, McPherson argues that it’s already too late for ad equate reform: humans have inadvertently created feedback loops that will keep making the situation worse. For example, the release of methane, caused (in part) by warming of the shallow Arctic ocean and the Siberian and Canadian tundra, will cause more warming because methane is a greenhouse gas even more dangerous than CO2. And so on.

Humans don’t have a very good record of predicting the future, in spite of various divinatory schemes. Whether developments are technological, political, or economic, we have proceeded without reliable forecasts. Given the surprises inherent in complex systems and in technical development, nobody can show that we face certain demise, though we can discuss probabilities.

Could we learn to regard collapse not as a firm prediction but as a scenario worth exploring? After all, the Pentagon has contingency plans for events that are arguably less likely and less devastating.

To return to our original question, what could be the use of taking seriously a scenario of collapse, especially the views that argue that it’s already too late or that changes could help, but probably won’t be made? If we feel grief at what seems to be happening, instead of simply seeming smug in a prediction of certain doom, if we invent ways to lessen the turbulence and create the best that is possible in the new circumstances, if we live intensely instead of habitually, then the scenario of demise might seem no worse than knowing that, as individuals, we each will die. Meanwhile, what are we capable of?

According to Rebecca Solnit’s A Paradise Built in Hell (2010), disasters can bring out the best in people. If the scenario of the collapseniks plays out, we will have opportunities to discover what kind of gardens we can create in the ruins of our present society. So what is the gift? That by responding fully to the scenario, we can meanwhile live more intensely and develop the elements of a society that, under new conditions as they develop, would work.

Now here are the promised examples of recent writers who are aware of the possibility of collapse and who, in various cases, are sketching alternatives. In this century, we’ve been given Tim Flahherty’s The Weather Makers (2001), Richard Heinberg’s The Party’s Over (2003), Jared Diamond’s Collapse (2005), James Howard Kunstler’s The Long Emergency (2005), Clive Hamilton’s A Short History of Progress (2005), Elizabeth Kolbert’s Field Notes from a Catastrophe (2006), George Monbiot’s Heat (2006), another assessment report from the Intergovernmental Panel on Climate Change (IPCC, 2007), James Lovelock’s The Revenge of Gaia (2007), John Michael Greer’s The Long Descent (2008).

And in the past five years: Sharon Astyk and Aaron Newton’s A Nation of Farmers (2009), Hamilton’s Requiem for a Species (2010), Chris Martenson’sThe Crash Course (2011), Guy McPherson’s Walking Away from Empire (2011), Dmitri Orlov’s Reinventing Collapse (2011), Paul Gilding’s The Great Disruption (2012), an even more dire IPCC assessment report (2014), Elizabeth Kolbert’s The Sixth Extinction (2014), and the National Academy of Sciences and the Royal Society, Climate Change: Evidence and Causes (also this year). (With a few exceptions, I have listed only the first book in which each author shows a pervasive awareness of collapse.)

In addition, apart from the writers already listed, many of whom write blogs, you can find many provocative personal and organizational websites, some of which publish several writers, such as Arctic News (Sam Carara), Climate Progress (Joe Romm), Collapse of Industrial Civilization (xraymike 79),   Collapsing into Consciousness (Gary Stamper), Culture Change (Jan Lundberg), Dark Mountain Project (Paul Kingsnorth), Grist, How to Save the World (Dave Pollard), Our Finite World (Gail Tverberg), Radio Ecoshock (hosted by Alex Smith), Speaking Truth to Power (articles gathered daily by Carolyn Baker), and Yale Environment 360 (edited by Roger Cohn Sr.).

We should of course judge not by the number of collapseniks, but by the quality of evidence these writers bring. It’s a conversation worth having.

Op-Ed News

A Gift From The Collapseniks  |  Peak Oil News and Message Boards

A Gift From The Collapseniks  |  Peak Oil News and Message Boards.

Of what possible use is it to imagine the end of civilization or even of the species? Is it simply a pessimistic indulgence or can it contribute to progressive and other positive results?

When I was a child, my family’s pastor used to elbow into almost every sermon an admiring reference to “St. John languishing in exile on the rock-bound, sea-girt island of Patmos.” He was referring to the author of  the grisly Book of Revelation , the dominant Western source of apocalyptic imagery.

We chuckle at cartoons of robed men on city sidewalks carrying placards that claim, “the end is nigh,” and at bumper stickers that declare, “in case of Rapture, this car will be driverless” (which sounds more dangerous than driving under the influence). Since St. John’s fiery prose, there have been many predictions of the end, including the modern cult studied by social psychologist Leon Festinger in When Prophecy Fails (1956).

Those who see danger tend to accuse others of “denial,” of “refusing to listen.” Perhaps a tincture of denial has given humans an evolutionary advantage. Speaking positively, psychologists refer to “optimism bias.” Most of us tend to imagine that things will turn out better than they do, a common mental pattern studied by such authors as Tali Sharot. While this trait arguably encourages enterprises, some of which succeed, it may also, on occasion, blind us to the possibility of avoidable loss, even terminal loss.

In A Year to Live (1997), Stephen Levine asks readers to pretend they have the awful privilege of knowing when they will die (in 52 weeks) and challenges them to review their histories honestly and to live abundantly in the remaining time. As my wife and I know, from working through Levine’s book with another couple, the result can be an enhancement of life.

During the Cold War, Joanna Macy gave us Despair and Personal Power in the Nuclear Age (1983). Before writing on ecology, on general systems theory, and on hope, Macy taught that a fuller life, including activism, could be approached through uninhibited expression of the deep feelings that led us to be concerned. More recent examples are the grief work of Carolyn Baker, author of Sacred Demise (2009) and Collapsing Consciously (2013) and of Francis Weller, author of Entering the Healing Ground (2012).

Still, it’s going against the grain to ask people to imagine extreme loss. Unlike some so-called primitive groups, our society is not set up for it, apart from isolated workshops. According to both Baker and Weller, working through grief requires the support of a community and the additional safety of a ritual container. For all its virtues, U.S. culture is based more on individuality, the frontier, and risky enterprise, than on mutual support and safe space.

Nonetheless, a growing number of observers of climate change and other trends foresee disaster. We can describe them as collapseniks, a term with a suffix derived from Russian in honor of Dmitri Orlo*, who grew up in St. Petersburg (then Leningrad) and emigrated to the U.S. An engineer, sailor, and writer, Orlov believes that his adopted country will descend into collapse, and that the U.S. is less well prepared than the country where he was raised. If we define collapsenik as an observer who is conscious of the possibility of economic, political, and social collapse and who believes collapse is worth taking seriously, then Orlov has a parade of company, of which I will give chronological highlights at the end of this piece.

There are big differences among collapsenik authors and even in a single author at different times. A spectrum exists, from those who feel we could avoid the worst of climate change by changing our ways substantially (“we’re sleepwalking toward disaster but could conceivably wake up”) to those who believe our species is doomed (“it’s already too late”). For example, scientist Guy McPherson has come to believe that, as a species, we are headed toward “near-term extinction” (niftily abbreviated as NTE).

While pessimists predict NTE, optimists envision the triumph of a progressive politics that would render climate change survivable, perhaps shifting us toward a steady-state economy, slowing the sixth extinction of species, and fostering a network of local and democratic institutions. An optimistic scenario would resonate with what Macy, expressing hope, now calls “The Great Turning.”

In contrast, McPherson argues that it’s already too late for ad equate reform: humans have inadvertently created feedback loops that will keep making the situation worse. For example, the release of methane, caused (in part) by warming of the shallow Arctic ocean and the Siberian and Canadian tundra, will cause more warming because methane is a greenhouse gas even more dangerous than CO2. And so on.

Humans don’t have a very good record of predicting the future, in spite of various divinatory schemes. Whether developments are technological, political, or economic, we have proceeded without reliable forecasts. Given the surprises inherent in complex systems and in technical development, nobody can show that we face certain demise, though we can discuss probabilities.

Could we learn to regard collapse not as a firm prediction but as a scenario worth exploring? After all, the Pentagon has contingency plans for events that are arguably less likely and less devastating.

To return to our original question, what could be the use of taking seriously a scenario of collapse, especially the views that argue that it’s already too late or that changes could help, but probably won’t be made? If we feel grief at what seems to be happening, instead of simply seeming smug in a prediction of certain doom, if we invent ways to lessen the turbulence and create the best that is possible in the new circumstances, if we live intensely instead of habitually, then the scenario of demise might seem no worse than knowing that, as individuals, we each will die. Meanwhile, what are we capable of?

According to Rebecca Solnit’s A Paradise Built in Hell (2010), disasters can bring out the best in people. If the scenario of the collapseniks plays out, we will have opportunities to discover what kind of gardens we can create in the ruins of our present society. So what is the gift? That by responding fully to the scenario, we can meanwhile live more intensely and develop the elements of a society that, under new conditions as they develop, would work.

Now here are the promised examples of recent writers who are aware of the possibility of collapse and who, in various cases, are sketching alternatives. In this century, we’ve been given Tim Flahherty’s The Weather Makers (2001), Richard Heinberg’s The Party’s Over (2003), Jared Diamond’s Collapse (2005), James Howard Kunstler’s The Long Emergency (2005), Clive Hamilton’s A Short History of Progress (2005), Elizabeth Kolbert’s Field Notes from a Catastrophe (2006), George Monbiot’s Heat (2006), another assessment report from the Intergovernmental Panel on Climate Change (IPCC, 2007), James Lovelock’s The Revenge of Gaia (2007), John Michael Greer’s The Long Descent (2008).

And in the past five years: Sharon Astyk and Aaron Newton’s A Nation of Farmers (2009), Hamilton’s Requiem for a Species (2010), Chris Martenson’sThe Crash Course (2011), Guy McPherson’s Walking Away from Empire (2011), Dmitri Orlov’s Reinventing Collapse (2011), Paul Gilding’s The Great Disruption (2012), an even more dire IPCC assessment report (2014), Elizabeth Kolbert’s The Sixth Extinction (2014), and the National Academy of Sciences and the Royal Society, Climate Change: Evidence and Causes (also this year). (With a few exceptions, I have listed only the first book in which each author shows a pervasive awareness of collapse.)

In addition, apart from the writers already listed, many of whom write blogs, you can find many provocative personal and organizational websites, some of which publish several writers, such as Arctic News (Sam Carara), Climate Progress (Joe Romm), Collapse of Industrial Civilization (xraymike 79),   Collapsing into Consciousness (Gary Stamper), Culture Change (Jan Lundberg), Dark Mountain Project (Paul Kingsnorth), Grist, How to Save the World (Dave Pollard), Our Finite World (Gail Tverberg), Radio Ecoshock (hosted by Alex Smith), Speaking Truth to Power (articles gathered daily by Carolyn Baker), and Yale Environment 360 (edited by Roger Cohn Sr.).

We should of course judge not by the number of collapseniks, but by the quality of evidence these writers bring. It’s a conversation worth having.

Op-Ed News

Beginning of the End? Oil Companies Cut Back on Spending | Our Finite World

Beginning of the End? Oil Companies Cut Back on Spending | Our Finite World.

Steve Kopits recently gave a presentation explaining our current predicament: the cost of oil extraction has been rising rapidly (10.9% per year) but oil prices have been flat. Major oil companies are finding their profits squeezed, and have recently announced plans to sell off part of their assets in order to have funds to pay their dividends. Such an approach is likely to lead to an eventual drop in oil production. I have talked about similar points previously (here and here), but Kopits adds some additional perspectives which he has given me permission to share with my readers. I encourage readers to watch the original hour-long presentation at Columbia University, if they have the time.

Controversy: Does Oil Extraction Depend on “Supply Growth” or “Demand Growth”?

The first section of the presentation is devoted the connection of GDP Growth to Oil Supply Growth vs Oil Demand Growth. I omit a considerable part of this discussion in this write-up.

Economists and oil companies, when making their projections, nearly always make their projections depend on “Demand Growth”–the amount people and businesses want. This demand growth is seen to be rising indefinitely in the future. It has nothing to do with affordability or with whether the potential consumers actually have jobs to purchase the oil products.

Kopits presents the following list of assumptions of demand constrained forecasting. (IOC’s are “Independent Oil Companies” like Shell and Exxon Mobil, as contrasted with government owned companies that are prevalent among oil exporters.)

Kopits 10 Assumptions of Demand Constrained ForecastingThus, it is the demand constrained view of forecasting that gives rise to the view that OPEC (Organization of Petroleum Exporting Nations) has enormous leverage. The assumption is made that OPEC can add or subtract as much supply as much as it chooses. Kopits provides evidence that in fact the Demand view is no longer applicable today, so this whole story is wrong.

One piece of evidence that the Demand Model is wrong is the fact that world crude oil (including lease condensate) production has been nearly flat since 2004, in a period when China and other growing Eastern economies have been trying to motorize. In comparison, there was a rise of 2.7% per year, when the West, with a similar population, was trying to motorize.

Kopits 20 Motorization and Oil in Historical Context

Kopits points out that China’s big source of oil supply has been US main street: China bids oil supply away from United States, to satisfy its needs. This is the way that markets have made oil available to China, when world supply is not rising much. It is part of the reason that oil prices have risen.

Another piece of evidence that the Demand Model is wrong relates to the assumption that social tastes have simply changed, leading to a drop in US oil consumption. Kopits shows the following chart, indicating that the major reason that young people don’t have cars is because they don’t have full-time jobs.

Kopits 35 Driving and Employment

Kopits makes a comparison of the role of oil in GDP growth to the role of water in plant growth in the desert. Without oil, there is less GDP growth, just as without water, a desert is starved for the element it needs for plant growth. Lack of oil can considered a binding constraint on GDP growth. (Labor availability might be a constraint, but it wouldn’t be a binding constraint, because there are plenty of unemployed people who might work if demand ramped up.) When more oil is available at a slightly lower price, it is quickly absorbed by markets.

“Supply Growth” is the limiting factor in recent years, because the amount of extraction is rising only slowly due to geological constraints and the number of users has risen to the point that there is a shortage.

Experience of Major Oil Producing Companies

Kopits presents data showing how badly the big, publicly traded oil companies are doing. He looks at two pieces of information:

  • “Capex” – “Capital expenditures” – How much companies are spending on things like exploration, drilling, and making of new offshore oil platforms
  • “Crude oil production” –

A person would normally expect that crude oil production would rise as Capex rises, but Kopits shows that in fact since 2006, Capex has continued to rise, but crude oil production has fallen.

Kopits 40 Oil majors capex and production

The above information is worldwide, not just for the US.  At some point a person might expect companies to start getting frustrated–they are spending more and more, but not getting very far in extracting oil.

Kopits then shows another version of Capex history plus a forecast. (This time the amounts are labeled “Upstream,” so the expenditures are clearly on the exploration and drilling side, rather than related to refineries or pipelines.)

Kopits 41 Upstream Spend continues Strong

The amounts this time are for the industry as a whole, including “NOCs” which are government owned (national) oil companies as well as IOCs (Independent Oil Companies), both large and small. Kopits remarks that the forecasts shown were made only six months ago. When talking about the above slide Koptis says,

People in the industry thought, “Capex has been going up and up. It will continue to do very well. We have been on this trajectory forever, and we are just going to get more and more money out of this.”

Now why is that? The reason is that in a Demand constrained model for those of you who took economics–price equals marginal cost. Right? So if my costs are going up, the price will also go up. Right? That is a Demand constrained model. So if it costs me more to get oil, it is no big deal, the market will recognize that at some point, in a Demand constrained model.

Not in a Supply constrained model! In a Supply constrained model, the price goes up to a price that is very similar to the monopoly price, after which you really can’t raise it, because that marginal consumer would rather do with less than pay more. They will not recognize [pay] your marginal cost. In that model, you get to a price, and after that price, there is significant resistance from the consumer to moving up off of that price. That is the “Supply Constrained Price.” If your costs continue to come up underneath you, the consumer won’t recognize it.

The rapidly growing Capex forecast is implicitly a Demand constrained forecast. It says, sure Capex can go up to a trillion dollars a year. We can spend a trillion dollars a year looking for oil and gas. The global economy will accept that.

I quote this because I am not sure I have explained the situation exactly that way. I perhaps have said that demand had to be connected to what consumers could afford. Wages don’t magically go up by themselves (even though economists think they can).

According to Koptis, the cost of oil extraction has in recent years been rising at 10.9% per year since 1999. (CAGR means “compound annual growth rate”).

Kopits 43 Costs are Rising Fast

Oil prices have been flat at the same time. On the above chart, “E&P Capex per barrel” is pretty much the same type of expenses as shown on the previous two charts. E&P means Exploration and Production.

Kopits explains that the industry needs prices of over $100 barrel.

Kopits 45 Industry needs oil prices over 100

The version of the chart I have up is too small to read the names of individual companies.  If you would like a chart with bigger names, you can download the original presentation.

Historically, oil companies have used a discounted cash flow approach to figure out whether over the long term, pricing for a particular field will be profitable. Unfortunately, this “standard” approach has not been working well recently. Expenses have been escalating too rapidly, and there have been too many new drilling sites producing below expectation. What Kopits shows on the above slide is the prices that companies need on different basis–a “cash flow” basis–so that each year companies have enough money to pay today’s capital expenditures, plus today’s expenses, plus today’sdividends.

The reason for using the cash flow approach is because companies have found themselves coming up short: they find that after they have paid capital expenditures and other expenditures such as taxes, they don’t have enough money left to pay dividends, unless they borrow money or sell off assets. Oil companies need to pay dividends because pension plans and other buyers of oil company stocks expect to receive regular dividends in payment for their equity investment. The dividends are important to pension plans.

In the last bullet point on the slide, Kopits is telling us that on this basis, most US oil companies need a price of $130 barrel or more. I noticed that Brazil’s Petrobas needs  a price of over $150 barrel. (OSX, Brazil’s number two oil company, recently went bankrupt.)

In the slide below, Kopits shows how Shell oil is responding to the poor cash flow situation of the major oil companies, based on recent announcements.

Kopits 46 The Majors Respond

Basically, Shell is cutting back. It no longer is going to tell investors how much it plans to produce in the future. Instead, it will focus on generating cash flow, at least partly by selling off existing programs.

In fact, Kopits reports that all of the major oil companies are reporting divestment programs. Does selling assets really solve the oil companies’ problems? What the oil companies would really like to do is raise their prices, but they can’t do that, because they don’t set prices, the market does–and the prices aren’t high enough. And the oil companies really can’t cut costs. So instead, they sell assets to pay dividends, or perhaps just to get out of the business. But is this sustainable?

Kopits 48 conventional oil production

The above slide shows that conventional oil production peaked in 2005. The top line is total conventional oil  production (calculated as world oil production, less natural gas liquids, and less US shale and other unconventional, and less Canadian oil sands). To get his estimate of “Crude Oil Normal Decline,” Kopits uses the mirror image of the rise in conventional oil production prior to 2005. He also shows a separate item for the rise in oil production from Iraq since 2005. The yellow portion called “crude production forward” is then the top line, less the other two items. It has taken $2.5 trillion to add this new yellow block. Now this strategy has run its course (based on the bad results companies are reporting from recent drilling), so what will oil companies do now?

Kopits 49 -Oil Majors Cut Capital Expenditures

Above, Kopits shows evidence that many companies in recent months have been cutting back budgets. These are big reductions–billions and billions of dollars.

Kopits 50 Majors Capex

On the above chart, Kopits tries to estimate the shape of the downslope in capital expenditures. This chart isn’t for all companies. It excludes the smaller companies, and it excludes the National oil companies, so it is about one-third of the market. The gray horizontal line at the top is the industry consensus back in October. The other lines represent more recent estimates of how Capex is declining. The steepest decline is the forecast based on Hess’s announcement. The next steepest (the dotted gray line) is the forecast based on Shell’s cutback.  The cutback for the part of the market not shown in the chart is likely to be different.

Oil and Economic Growth

Kopits offers his view of how much efficiency can be gained in a given year, in the slide below:

Koptis 54 Oil Efficiency and GDP GrowthIn his view, the maximum sustainable increase in efficiency is 2.5% in non-recessions, but a more normal increase is 1% per year. At current oil supply growth levels, OECD GDP growth is capped at 1% to 2%. The effect of constrained oil supply is reducing OECD GDP growth by 1% to 2%.

Conclusions

Kopits 59 ConclusionsWhile demand constrained models dominate thinking, in fact, a supply constrained model is more appropriate in recent years.

We seem to be short of oil. Whenever there is extra oil on the market, it is quickly soaked up. Oil prices have not collapsed. No one is nervous about a price collapse.

China recently has been putting little price pressure on the market–its demand is recently less high. Kopits thinks China will eventually return to the market, and put price pressure on oil prices. Thus, oil price pressures are likely to return at some point.

Gail’s Observations

An obvious point, which I thought I heard when I listened to the presentation the first time, but didn’t hear the second time is, “Who will buy all of these assets on the market, and at what price?” China would seem to be a likely buyer, if one is to be found. But when several companies want to sell assets at the same time, a person wonders what prices will be available.

The new strategy is, in effect, maintaining dividends by returning part of capital. It is clearly not a very sustainable strategy.

It will take a while for these cut-backs in Capex expenditures to find their way through to oil output, but it could very well start in a year or two. This is disturbing.

What we are seeing now is a cutback in what companies consider “economically extractable oil”–something that isn’t exactly reported by companies. I expect that what is being sold off is mostly not “proven reserves.”

In this talk, it looks like lack of sufficient investment is poised to bring the system down.  That is basically the expected limit under Limits to Growth.

In theory, if an expansion of China’s oil demand does bring oil prices up again, it could in theory encourage an increase in drilling activity. But it is doubtful that economies could withstand the high prices–they are already having problems at current price levels, considering the continued need for Quantitative Easing to keep interest rates low.

A recent news item was titled, G20 Finance Ministers Agree to Lift Global Growth Target. According to that article,

Mr Hockey said reaching the goal would require increasing investment but that it could create “tens of millions of new jobs”.

The cutback in investment by oil companies is working precisely in the wrong direction. If these cutbacks act to cut future oil extraction, it will bring down growth further.

A Forecast of Our Energy Future; Why Common Solutions Don’t Work | Our Finite World

A Forecast of Our Energy Future; Why Common Solutions Don’t Work | Our Finite World.

In order to understand what solutions to our energy predicament will or won’t work, it is necessary to understand the true nature of our energy predicament. Most solutions fail because analysts assume that the nature of our energy problem is quite different from what it really is. Analysts assume that our problem is a slowly developing long-term problem, when in fact, it is a problem that is at our door step right now.

The point that most analysts miss is that our energy problem behaves very much like a near-term financial problem. We will discuss why this happens. This near-term financial problem is bound to work itself out in a way that leads to huge job losses and governmental changes in the near term. Our mitigation strategies need to be considered in this context. Strategies aimed simply at relieving energy shortages with high priced fuels and high-tech equipment are bound to be short lived solutions, if they are solutions at all.

OUR ENERGY PREDICAMENT

1. Our number one energy problem is a rapidly rising need for investment capital, just to maintain a fixed level of resource extraction. This investment capital is physical “stuff” like oil, coal, and metals.

We pulled out the “easy to extract” oil, gas, and coal first. As we move on to the difficult to extract resources, we find that the need for investment capital escalates rapidly. According to Mark Lewis writing in the Financial Times, “upstream capital expenditures” for oil and gas amounted to  nearly $700 billion in 2012, compared to $350 billion in 2005, both in 2012 dollars. This corresponds to an inflation-adjusted annual increase of 10% per year for the seven year period.

Figure 1. The way would expect the cost of the extraction of energy supplies to rise, as finite supplies deplete.

Figure 1. The way would expect the cost of the extraction of energy supplies to rise, as finite supplies deplete.

In theory, we would expect extraction costs to rise as we approach limits of the amount to be extracted. In fact, the steep rise in oil prices in recent years is of the type we would expect, if this is happening. We were able to get around the problem in the 1970s, by adding more oil extraction, substituting other energy products for oil, and increasing efficiency. This time, our options for fixing the situation are much fewer, since the low hanging fruit have already been picked, and we are reaching financial limits now.

Figure 2. Historical oil prices in 2012 dollars, based on BP Statistical Review of World Energy 2013 data. (2013 included as well, from EIA data.)

Figure 2. Historical oil prices in 2012 dollars, based on BP Statistical Review of World Energy 2013 data. (2013 included as well, from EIA data.)

To make matters worse, the rapidly rising need for investment capital arises is other industries as well as fossil fuels. Metals extraction follows somewhat the same pattern. We extracted the highest grade ores, in the most accessible locations first. We can still extract more metals, but we need to move to lower grade ores. This means we need to remove more of the unwanted waste products, using more resources, including energy resources.

Figure 3. Waste product to produce 100 units of metal

Figure 3. Waste product to produce 100 units of metal

There is a huge increase in the amount of waste products that must be extracted and disposed of, as we move to lower grade ores (Figure 3). The increase in waste products is only 3% when we move from ore with a concentration of .200, to ore with a concentration .195. When we move from a concentration of .010 to a concentration of .005, the amount of waste product more than doubles.

When we look at the inflation adjusted cost of base metals (Figure 4 below), we see that the index was generally falling for a long period between the 1960s and the 1990s, as productivity improvements were greater than falling ore quality.

Figure 4. World Bank inflation adjusted base metal index (excluding iron).

Figure 4. World Bank inflation adjusted base metal index (excluding iron).

Since 2002, the index is higher, as we might expect if we are starting to reach limits with respect to some of the metals in the index.

There are many other situations where we are fighting a losing battle with nature, and as a result need to make larger resource investments. We have badly over-fished the ocean, so  fishermen now need to use more resources too catch the remaining much smaller fish.  Pollution (including CO2 pollution) is becoming more of a problem, so we invest resources in  devices to capture mercury emissions and in wind turbines in the hope they will help our pollution problems. We also need to invest increasing amounts in roads,  bridges, electricity transmission lines, and pipelines, to compensate for deferred maintenance and aging infrastructure.

Some people say that the issue is one of falling Energy Return on Energy Invested (EROI), and indeed, falling EROI is part of the problem. The steepness of the curve comes from the rapid increase in energy products used for extraction and many other purposes, as we approach limits.  The investment capital limit was discovered by the original modelers ofLimits to Growth in 1972. I discuss this in my post Why EIA, IEA, and Randers’ 2052 Energy Forecasts are Wrong.

2. When the amount of oil extracted each year flattens out (as it has since 2004), a conflict arises: How can there be enough oil both (a) for the growing investment needed to maintain the status quo, plus (b) for new investment to promote growth?

In the previous section, we talked about the rising need for investment capital, just to maintain the status quo. At least some of this investment capital needs to be in the form of oil.  Another use for oil would be to grow the economy–adding new factories, or planting more crops, or transporting more goods. While in theory there is a possibility of substituting away from oil, at any given point in time, the ability to substitute away is quite limited. Most transport options require oil, and most farming requires oil. Construction and road equipment require oil, as do diesel powered irrigation pumps.

Because of the lack of short term substitutability, the need for oil for reinvestment tends to crowd out the possibility of growth. This is at least part of the reason for slower world-wide economic growth in recent years.

3. In the crowding out of growth, the countries that are most handicapped are the ones with the highest average cost of their energy supplies.

For oil importers, oil is a very high cost product, raising the average cost of energy products. This average cost of energy is highest in countries that use the highest percentage of oil in their energy mix.

If we look at a number of oil importing countries, we see that economic growth tends to be much slower in countries that use very much oil in their energy mix. This tends to happen  because high energy costs make products less affordable. For example, high oil costs make vacations to Greece unaffordable, and thus lead to cut backs in their tourist industry.

It is striking when looking at countries arrayed by the proportion of oil in their energy mix, the extent to which high oil use, and thus high cost energy use, is associated with slow economic growth (Figure 5, 6, and 7). There seems to almost be a dose response–the more oil use, the lower the economic growth. While the PIIGS (Portugal, Italy, Ireland, Greece, and Spain) are shown as a group, each of the countries in the group shows the same pattern on high oil consumption as a percentage of its total energy production in 2004.

Globalization no doubt acted to accelerate this shift toward countries that used little oil. These countries tended to use much more coal in their energy mix–a much cheaper fuel.

Figure 5. Percent energy consumption from oil in 2004, for selected countries and country groups, based on BP 2013 Statistical Review of World Energy. (EU - PIIGS means "EU-27 minus PIIGS')

Figure 5. Percent energy consumption from oil in 2004, for selected countries and country groups, based on BP 2013 Statistical Review of World Energy. (EU – PIIGS means “EU-27 minus PIIGS’)

Figure 6. Average percent growth in real GDP between 2005 and 2011, based on USDA GDP data in 2005 US$.

Figure 6. Average percent growth in real GDP between 2005 and 2011, based on USDA GDP data in 2005 US$.

Figure 7. Average percentage consumption growth between 2004 and 2011, based on BP's 2013 Statistical Review of World Energy.

Figure 7. Average percentage consumption growth between 2004 and 2011, based on BP’s 2013 Statistical Review of World Energy.

4. The financial systems of countries with slowing growth are especially affected, as are the governments. Debt becomes harder to repay with interest, as economic growth slows.

With slow growth, debt becomes harder to repay with interest. Governments are tempted to add programs to aid their citizens, because employment tends to be low. Governments find that tax revenue lags because of the lagging wages of most citizens, leading to government deficits. (This is precisely the problem that Turchin and Nefedov noted, prior to collapse, when they analyzed eight historical collapses in their book Secular Cycles.)

Governments have recently attempt to fix both their own financial problems and the problems of their citizens by lowering interest rates to very low levels and by using Quantitative Easing. The latter allows governments to keep even long term interest rates low.  With Quantitative Easing, governments are able to keep borrowing without having a market of ready buyers. Use of Quantitative Easing also tends to blow bubbles in prices of stocks and real estate, helping citizens to feel richer.

5. Wages of citizens of  countries oil importing countries tend to remain flat, as oil prices remain high.

At least part of the wage problem relates to the slow economic growth noted above. Furthermore, citizens of the country will cut back on discretionary goods, as the price of oil rises, because their cost of commuting and of food rises (because oil is used in growing food). The cutback in discretionary spending leads to layoffs in discretionary sectors. If exported goods are high priced as well, buyers from other countries will tend to cut back as well, further leading to layoffs and low wage growth.

6. Oil producers find that oil prices don’t rise high enough, cutting back on their funds for reinvestment. 

As oil extraction costs increase, it becomes difficult for the demand for oil to remain high, because wages are not increasing. This is the issue I describe in my post What’s Ahead? Lower Oil Prices, Despite Higher Extraction Costs.

We are seeing this issue today. Bloomberg reports, Oil Profits Slump as Higher Spending Fails to Raise Output. Business Week reports Shell Surprise Shows Profit Squeeze Even at $100 Oil. Statoil, the Norwegian company, is considering walking away from Greenland, to try to keep a lid on production costs.

7. We find ourselves with a long-term growth imperative relating to fossil fuel use, arising from the effects of globalization and from growing world population.

Globalization added approximately 4 billion consumers to the world market place in the 1997 to 2001 time period. These people previously had lived traditional life styles. Once they became aware of all of the goods that people in the rich countries have, they wanted to join in, buying motor bikes, cars, televisions, phones, and other goods. They would also like to eat meat more often. Population in these countries continues to grow adding to demand for goods of all kinds. These goods can only be made using fossil fuels, or by technologies that are enabled by fossil fuels (such as today’s hydroelectric, nuclear, wind, and solar PV).

8. The combination of these forces leads to a situation in which economies, one by one, will turn downward in the very near future–in a few months to a year or two. Some are already on this path (Egypt, Syria, Greece, etc.)

We have two problems that tend to converge: financial problems that countries are now hiding, and ever rising need for resources in a wide range of areas that are reaching limits (oil, metals, over-fishing, deferred maintenance on pipelines).

On the financial side, we have countries trying to hang together despite a serious mismatch between revenue and expenses, using Quantitative Easing and ultra-low interest rates. If countries unwind the Quantitative Easing, interest rates are likely to rise. Because debt is widely used, the cost of everything from oil extraction to buying a new home to buying a new car is likely to rise. The cost of repaying the government’s own debt will rise as well, putting governments in worse financial condition than they are today.

A big concern is that these problems will carry over into debt markets. Rising interest rates will lead to widespread defaults. The availability of debt, including for oil drilling, will dry up.

Even if debt does not dry up, oil companies are already being squeezed for investment funds, and are considering cutting back on drilling. A freeze on credit would make certain this happens.

Meanwhile, we know that investment costs keep rising, in many different industries simultaneously, because we are reaching the limits of a finite world. There are more resources available; they are just more expensive. A mismatch occurs, because our wages aren’t going up.

The physical amount of oil needed for all of this investment keeps rising, but oil production continues on its relatively flat plateau, or may even begins to drop. This leads to less oil available to invest in the rest of the economy. Given the squeeze, even more countries are likely to encounter slowing growth or contraction.

9. My expectation is that the situation will end with a fairly rapid drop in the production of all kinds of energy products and the governments of quite a few countries failing. The governments that remain will dramatically cut services.

With falling oil production, promised government programs will be far in excess of what governments can afford, because governments are basically funded out of the surpluses of a fossil fuel economy–the difference between the cost of extraction and the value of these fossil fuels to society. As the cost of extraction rises, the surpluses tend to dry up.

Figure 8. Cost of extraction of barrel oil, compared to value to society. Economic growth is enabled by the difference.

Figure 8. Cost of extraction of barrel oil, compared to value to society. Economic growth is enabled by the difference.

As these surpluses shrink, governments will need to shrink back dramatically. Government failure will be easier than contracting back to a much smaller size.

International finance and trade will be particularly challenging in this context. Trying to start over will be difficult, because many of the new countries will be much smaller than their predecessors, and will have no “track record.” Those that do have track records will have track records of debt defaults and failed promises, things that will not give lenders confidence in their ability to repay new loans.

While it is clear that oil production will drop, with all of the disruption and a lack of operating financial markets, I expect natural gas and coal production will drop as well. Spare parts for almost anything will be difficult to get, because of the need for the system of international trade to support making these parts. High tech goods such as computers and phones will be especially difficult to purchase. All of these changes will result in a loss of most of the fossil fuel economy and the high tech renewables that these fossil fuels support.

A Forecast of Future Energy Supplies and their Impact

A rough estimate of the amounts by which energy supply will drop is given in Figure 9, below.

Figure 9. Estimate of future energy production by author. Historical data based on BP adjusted to IEA groupings.

Figure 9. Estimate of future energy production by author. Historical data based on BP adjusted to IEA groupings.

The issue we will be encountering could be much better described as “Limits to Growth” than “Peak Oil.” Massive job layoffs will occur, as fuel use declines. Governments will find that their finances are even more pressured than today, with calls for new programs at the time revenue is dropping dramatically. Debt defaults will be a huge problem. International trade will drop, especially to countries with the worst financial problems.

One big issue will be the need to reorganize governments in a new, much less expensive  way. In some cases, countries will break up into smaller units, as the Former Soviet Union did in 1991. In some cases, the situation will go back to local tribes with tribal leaders. The next challenge will be to try to get the governments to act in a somewhat co-ordinated way.  There may need to be more than one set of governmental changes, as the global energy supplies decline.

We will also need to begin manufacturing goods locally, at a time when debt financing no longer works very well, and governments are no longer maintaining roads. We will have to figure out new approaches, without the benefit of high tech goods like computers. With all of the disruption, the electric grid will not last very long either. The question will become: what can we do with local materials, to get some sort of economy going again?

NON-SOLUTIONS and PARTIAL SOLUTIONS TO OUR PROBLEM

There are a lot of proposed solutions to our problem. Most will not work well because the nature of the problem is different from what most people have expected.

1. Substitution. We don’t have time. Furthermore, whatever substitutions we make need to be with cheap local materials, if we expect them to be long-lasting. They also must not over-use resources such as wood, which is in limited supply.

Electricity is likely to decline in availability almost as quickly as oil because of inability to keep up the electrical grid and other disruptions (such as failing governments, lack of oil to lubricate machinery, lack of replacement parts, bankruptcy of companies involved with the production of electricity) so is not really a long-term solution to oil limits.

2. Efficiency. Again, we don’t have time to do much. Higher mileage cars tend to be more expensive, replacing one problem with another. A big problem in the future will be lack of road maintenance. Theoretical gains in efficiency may not hold in the real world. Also, as governments reduce services and often fail, lenders will be unwilling to lend funds for new projects which would in theory improve efficiency.

In some cases, simple devices may provide efficiency. For example, solar thermal can often be a good choice for heating hot water. These devices should be long-lasting.

3. Wind turbines. Current industrial type wind turbines will be hard to maintain, so are  unlikely to be long-lasting. The need for investment capital for wind turbines will compete with other needs for investment capital. CO2 emissions from fossil fuels will drop dramatically, with or without wind turbines.

On the other hand, simple wind mills made with local materials may work for the long term. They are likely to be most useful for mechanical energy, such as pumping water or powering looms for cloth.

4. Solar Panels. Promised incentive plans to help homeowners pay for solar panels can be expected to mostly fall through. Inverters and batteries will need replacement, but probably will not be available. Handy homeowners who can rewire the solar panels for use apart from the grid may find them useful for devices that can run on direct current. As part of the electric grid, solar panels will not add to its lifetime. It probably will not be possible to make solar panels for very many years, as the fossil fuel economy reaches limits.

5. Shale Oil. Shale oil is an example of a product with very high investment costs, and returns which are doubtful at best. Big companies who have tried to extract shale oil have decided the rewards really aren’t there. Smaller companies have somehow been able to put together financial statements claiming profits, based on hoped for future production and very low interest rates.

Costs for extracting shale oil outside the US for shale oil are likely to be even higher than in the US. This happens because the US has laws that enable production (landowner gets a share of profits) and other beneficial situations such as pipelines in place, plentiful water supplies, and low population in areas where fracking is done. If countries decide to ramp up shale oil production, they are likely to run into similarly hugely negative cash flow situations. It is hard to see that these operations will save the world from its financial (and energy) problems.

6. Taxes. Taxes need to be very carefully structured, to have any carbon deterrent benefit. If part of taxes consumers would normally pay to the government are levied on fuel for vehicles, the practice can encourage more the use of more efficient vehicles.

On the other hand, if carbon taxes are levied on businesses, the taxes tend to encourage businesses to move their production to other, lower-cost countries. The shift in production leads to the use of more coal for electricity, rather than less. In theory, carbon taxes could be paired with a very high tax on imported goods made with coal, but this has not been done. Without such a pairing, carbon taxes seem likely to raise world CO2 emissions.

7.  Steady State Economy. Herman Daly was the editor of a book in 1973 calledToward a Steady State Economy, proposing that the world work toward a Steady State economy, instead of growth. Back in 1973, when resources were still fairly plentiful, such an approach would have acted to hold off  Limits to Growth for quite a few years, especially if zero population growth were included in the approach.

Today, it is far too late for such an approach to work. We are already in a situation with very depleted resources. We can’t keep up current production levels if we want to–to do so would require greatly ramping up energy production because of the rising need for energy investment to maintain current production, discussed in Item (1) of Our Energy Predicament. Collapse will probably be impossible to avoid. We can’t even hope for an outcome as good as a Steady State Economy.

7. Basing Choice of Additional Energy Generation on EROI Calculations. In my view, basing new energy investment on EROI calculations is an iffy prospect at best. EROI calculations measure a theoretical piece of the whole system–”energy at the well-head.” Thus, they miss important parts of the system, which affect both EROI and cost. They also overlook timing, so can indicate that an investment is good, even if it digs a huge financial hole for organizations making the investment. EROI calculations also don’t consider repairability issues which may shorten real-world lifetimes.

Regardless of EROI indications, it is important to consider the likely financial outcome as well. If products are to be competitive in the world marketplace, electricity needs to be inexpensive, regardless of what the EROI calculations seem to say. Our real problem is lack of investment capital–something that is gobbled up at prodigious rates by energy generation devices whose costs occur primarily at the beginning of their lives. We need to be careful to use our investment capital wisely, not for fads that are expensive and won’t hold up for the long run.

8. Demand Reduction. This really needs to be the major way we move away from fossil fuels. Even if we don’t have other options, fossil fuels will move away from us. Encouraging couples to have smaller families would seem to be a good choice. 

%d bloggers like this: